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A Generalization of the Method of Averages 
for Overdetermined Linear Systems 

By Ned Anderson 

Abstract. Necessary and sufficient conditions are established for an existence and 
uniqueness result for a generalization of the method of averages for overdetermined 

linear systems. Some practical schemes are given, and a connection with Galerkin's 

method is indicated. 

1. Introduction. In [4], an analysis was made, using the notion of the angle 
between linear subspaces, of the solution of an overdetermined system of linear equa- 
tions 

(1) Fx t~ z, z EE, x EE', n > m, 

F an n x m matrix, by the method of averages. In this method (we use the notation 
of [4] ), the overdetermined system (1) is replaced by the system 

(2) GTFy = GTz, 

where GT is an m x n matrix of the form 

I I ... 0 0 . .0 . . ..0 0 . 0 

O O . 0 1 1 .. I... .. 0 0 . .0 

O 0 . 0 . 0. . T . 1*- I 

In [4], the matrix G is called a summation matrix, and it is stated there that G "is 
supposed to be chosen such that GTF is nonsingular". 

In the next section, we define a class of matrices, which we call rectangular 
smoothing matrices, which includes matrices such as GT above as a special case. We 
show that the condition that G be a rectangular smoothing matrix is necessary and 
sufficient for GTF to be nonsingular, for all F derived from a Chebyshev system in the 
manner described below. Thus, we focus on the case when the overdetermined sys- 

Received August 29, 1973. 

AMS (MOS) subject classifications (1970). Primary 65F20, 65D 10. 
Copyiight ? 1975, Americain Mathematical Society 

607 



608 NED ANDERSON 

tem is derived from the approximation of a function by a linear combination of mem- 
bers of a Chebyshev system. 

2. A Generalized Method of Averages. Let tpo, .pj, * pm - 1 be a Chebyshev 
system (we use the definition given in, e.g., [5, p. 1]) on the interval [a, b], and let 
approximate values {zi}74=-1 of a function be given at the abscissae a = x0 < x1 < .. 

< - = b, (n > m). Let F be the matrix whose jth column is 1pj(xj). We shall con- 
sider the following class of matrices G: 

Definition. A rectangular smoothing matrix G is an n x m matrix (n > m) which 
satisfies 

(i) every m x m minor formed by deleting n - m columns of GT is nonnegative, 
(ii) rank(GT) = m. 

Remark. There are (n ) m x m minors of GT which can be formed in the above 
way (i.e., with lexicographical order of the columns preserved). Condition (ii) (together 
with (i)) implies that at least one of these minors is strictly positive. 

One can think of the elements of GTz (the right-hand side of (2)) as weighted 
sums of the approximate values zi. Thus, a normalization condition such as 

n-1 
E GlT= 1, i = 0, ' ,m -1 

j=0 

is perhaps natural for applications but not necessary for the result below. 
Two examples of such rectangular smoothing matrices are (we give the transpose, 

GT) 

1/2 1/2 0 0 0 1/2 1/2 0 0 

0 1/4 1/2 1/4 0 and 0 0 2/3 1/31. 

0 0 0 1/2 1/2 0 0 1/3 2/3 

Two matrices which are not rectangular smoothing matrices are 

1/2 1/2 0 0 1/2 1/2 0 0 

0 0 1 0 and 1/4 1/4 1/4 1/4. 

0 0 1 0 0 0 1/2 1/2 

We note that the rows of GT are linearly dependent in the above two examples, con- 
tradicting (ii). A more subtle example, where the rows of GT are linearly independent, 
is 

I 0 0 0 

GT(c)= 1 -a 01. 
0 1 -a u/2 a/2 
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The set of values for which GT(cx) is a rectangular smoothing matrix is 2 - N ?2 
? 1. 

2. As the reader can verify, for xo < xi < x2 < X3, and tpo = 1, TP1 = x, 02 = X; 
for ae = 0 the determinant of GTF is (for simplicity, we denote the determinant of a 

matrix M, det(M), by IMI) 

1 x0 x2 

1 X2 x2 < o 

1 X1 x2 

and for ae= 1, det(GTF) is 

1 
1 x x >0 

2 3l X2 Xi 1 2 +2) (2+2) 

Thus, for a suitable choice of a-, GTF is singular. For GT(o!) above, with 2 - X/2 < 

ae < 1, we also have det(GTF) > 0 for every F derived from a Chebyshev system as 
will follow from the theorem below. 

THEOREM 1. Let a = xo < x1 < .. <x 1 = b be a partition P of [a, b]. 

Let GT be an m x n matrix whose elements may depend on P (but are bounded). 
Then a necessary and sufficient condition for det(GTF) to be positive, for every F 
derived from a Chebyshev system F = {f ***,. m -1 } on [a, b], is that G be a 
rectangular smoothing matrix (termed RSM hereafter). 

Proof. Sufficiency. Suppose G is a RSM. By the Cauchy-Binet theorem (see 
[1], or [6, p. 63]), det(GTF) can be written as 

K 
(3) det(GTF) =gif, 

where K = (m)) and the g are the m x m minors of GT whose columns (considered 
as columns of GT) are in increasing order. The f1 are m x m minors formed from 

the rows of F, taken with row indices the same as, and in the same order as, the col- 

umn indices in g1. 
Since F is an (arbitrary) Chebyshev system and the row indices in fj appear in 

increasing order, f1 > 0 for all j. Also, g1 > 0 for all j by the definition of RSM, and 
at least one of the g1 is positive by the remark following the definition of RSM. Thus, 
det(GTF) > 0. 

Necessity. Suppose det(GTF) > 0. Again we use expansion (3). For any Cheby- 
shev system F, we have f, > 0 for all j. Since det(GTF) > 0, then at least one of the 
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g1 must be positive, using (3). Thus, rank(GT) > m. But rank(GT) < min(m, n) = m. 
So rank(GT) = m. Now, suppose that some m x m minor g, of GT satisfies gr < 0. 

If m = n, then gr < 0 is a direct contradiction of det(GTF) > 0. It remains to con- 
sider the case n > m. The term fr corresponding to gr in expansion (3) is of the form 

<0(x0i) p1(xi) ... fPm -(Xii) 

iP0 (Xi 01) i(xi ... iom -1 (im- 

where io < i < .. < im 1. Let Ir = {io, * . . i } and construct a new Cheby- 

shev system F as follows: 
Let w be a positive, continuous function defined on [a, b] satisfying: 

w(xl)= 1 lEIr, 

w(x1) = e, 1 E {0, 1, , n - 1}-Ir, 

where e > 0 will be chosen later. 
We define a new Chebyshev system (see [5, p. 10]) F as 

F = {w(x)po(x)), W(x)1 (X), , WWX)m - 1 (X)}, 

and denote the associated minors by fi. Clearly, fr = fr, while the determinants 
for j $ r, can be made as small in magnitude as we wish, by choosing e small enough, 
since they all contain a factor e in at least one row. Choosing e so small that 

| gji | Wrf 

we get 
det(GTF) 

< 0, a contradiction, and the proof is complete. 
Remark 1. Theorem 1 is also true for extended Chebyshev systems [5, p. 6], 

i.e., it holds for generalized Hermite data Z4k), k = 0, 1, , ki. One need only 
take the function w in the proof to be sufficiently differentiable and to satisfy the 
additional conditions: 

W() =W"(Xd)=.. w(maxki)(X ) = 0 for 1 {0, 1, ,n -} r 

Applying Leibniz' rule to wtpj, it is clear that the magnitude of fj, for j $ r, can be 

made as small as we wish by choosing e small enough. 
Remark 2. The definition of RSM above has the following interpretation. We 

can associate a weak Chebyshev (WT) system [5, p. 3] of m functions, P = {j}?ml 
1 

with G. The ith column of G is the table vector of the function iP(x) at the points 
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X0o X1 Xn- 1 We shall usually think of G as being derived from a particular 
choice of 4, and we call T the associated WT-system. We have: 

THEOREM 2. Let 4' = {4j}ml- 
1 be a weak Chebyshev system of functions on 

[a, b]. Let a < xo < ... < Xn- 1 < b, with n > m and suppose that, for at least 
one subset {f}ij1 of {xx}7? ' with O <1 < * < - 1, we have Ij(cj)I > O. 
Then the n x m matrix G with G7TJ = iP'(x1) is a RSM. 

Proof This follows directly from the definition of a WT system [5, p. 31 and 
Theorem 1. 

Example. Generalized spline functions. See [5, Chapter XI, Lemma 9.2] for 
necessary and sufficient conditions which a set {x} must satisfy with respect to the 
nodes of the splines in order to have VQ'()j > 0. The next few sections will be con- 
cerned with some RSM's of obvious practical interest. 

3. RSM's with Positive Entries. 
THIEOREM 3. Let GT be an m x n matrix (n > m) of rank m. For0 ?i? m - 1, 

let ri denote the column index of the first nonzero element in row i and let Pi denote 
the column index of the last nonzero element in row i (ri and Pi are well defined since 
rank(GT) = m, and clearly rG ? v1). Suppose GT in addition to being of rank m, also 
satisfies: 

(a) 'GT > O, i = O, 1, , m-1; j = 0, 1, ,n-1. 

(b) Ti+ 1 > P'i i = O, 1, * , m-2. 

Then G is a RSM. 
Proof. The result will follow from the series of lemmas below. To avoid repe- 

tition, we shall omit specifying the range of various indices when this is clear from the 
context. 

LEMMA 1. i+ 1 > 7i. This is obvious. 
LEMMA 2. The nonzero elements in any column of GT appear consecutively. 

Proof. Suppose that column p of GT has at least two nonzero elements (other- 
wise the assertion of the lemma holds trivially), and suppose that there are two non- 

zero elements which do not appear consecutively, i.e., 

'T ~_ "T 0, ..JT 01' GT GO, i+ 1p i k +k-1 ,p -0*, , 

where k > 2. Since GT = O, we have p ? li-. This implies ri+ 1 > p by (b). Gi?+ k, p 

0 implies Ti+k A p. Hence Ti+k < fi+ 1 + Using Lemma 1, we get Ti+k = ri+ 1 . But 

Ti+ 1 < p since fi+k S p, so 7i+ 1 = p. This contradicts GiT+ =0 
LEMMA 3. There are at most two nonzero elements in any column of GT. 
Proof. Suppose there are three (or more) nonzero elements in the pth column. 

They must appear consecutively, by Lemma 2. Suppose that G.?p, GT T and 
`,1 1~~~~~~~~~~~~~,'P i+ 1,'P 

G T+ pare all nonzero. By an argument similar to that of Lemma 2, r 1 = P= 
i+ 2,p 

*aT) = m. 

Pi= Pi This contradicts rank(GT)=m 
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LEMMA 4. Let M be a nonzero minor formed from columns ko k .., k 

of GT (k0< k < <km ). Then 

rn-i 

det(M) = [I M 
1=0 

Proof. The individual terms of det(M) are of the form 

0 1 .. M * I- 

sign ii [ * * MM Mn r- 
0 M~~'r - 1, 

where io, *l * im_ 1 is some permutation of 0, , m - 1. Consider the m! - 1 
terms which contain at least one inversion (only Moo0M 1 * * Mm - 1im - 1 has no in- 

version). Assume for definiteness that ir > ir+ 1 for a certain r E {O, 1, , m - 2}. 

Now 

M r, i r,j and Mr+ ii r+ id" 
r ~~~~~r+i +,' 

with j > j' since ir > ir+ 1' Suppose GT. + 0. Since Tr+ > v'r and Vr > > j', then 
Tr+i > j'; that is, GfT 1 , =0. Hence, the only possible nonzero term in det(M) is 
flm- 1Mij. Det(M) $ 0 by assumption, and since Mij are elements of GT, we have 

Mi1 > 0. Hence 

det(M)= Fl Mii > ?. 

COROLLARY. The nonzero m x m minors of GT (m > 2) with ko <k1 <* 

< km are tridiagonal matrices, with Mi,i+ 1 *Mi+ 1,i = 0, and Mii > 0. 
(Proof Use Lemma 3 and Lemma 4.) 
Lemma 4 concludes the proof of Theorem 3. 

4. A Method of Local Moments. We consider the following class of matrices whose 
use as RSM's we call the method of local moments. Suppose GT is an m x n matrix, 
m < n, composed of mi x ni blocks GT, i = 0, 1,* , r-1, in a way which is clear 

from the figure below for r = 3. We require mi < ni since this is necessary for 
rank(GT) = m. 

0 

0 0 

0 

Thus, we require GT to be "block diagonal" with rectangular blocks on the diagonal. 
Then we have: 
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THEOREM 4. Suppose that for each of the mi x ni blocks GiT i = 0, r - 1, 

Gi is a RSM. Then G is a RSM. 
Proof. This follows by induction on the number of blocks and application of 

the Laplace expansion [1, pp. 78-82] to the successive nonzero minors with column 
indices in increasing order. (Only mi x mi minors of GT arise as possible nonzero 
factors in the Laplace expansion of an m x m minor of GT. The sign associated with 
them is + 1, and each G[ has at least one positive m, x mi minor.) 

Examples. 

[1 I 1 100 [ 1 11 001 

exO ex1 eX 2 0 0 x - X x X - X 0 o 
0 1 0 @ x1)2 00 ? O 0 1 1 (o- X1)2 ? (X 2 - X1)2 0 0X 

30 0 0 X3 X4 0 0 0 1 1 

The method of local moments should be especially useful in real-time data processing 
or in other applications where local "compression" of the equations is warranted. Only 
a small portion of the data need be in storage at any one time, and the information in 
a segment of the data is then "compressed" by computing the local moments (the 
product of GT and the ith segment of the data vector). 

5. A Connection with Galerkin's Method. The method for approximately solv- 
ing overdetermined systems presented in the previous sections can be seen as a general- 
ization of Galerkin's method [3, Chapter 8.6.4]. Suppose we are seeking an approxi- 
mate solution 

U t~ cotpO + Cl Pl + + cm _00M - 1 

to a linear operator equation (for a function of one variable) Au = f. Galerkin's method 

requires that the coefficients ci be determined by requiring that the scalar product 

(~p,, Au -J) = 0, i =0, **,m-1 

The method we have presented determines the ci by requiring, for a discrete inner 

product on a net {Xj} =- 1, (4',l Au - f) = 0, where the j are chosen so that ij(x1) 
is a RSM. Hopefully, the use of the appropriate T will result in both simplified compu- 
tations and good accuracy. The B-splines (see Schoenberg [8], and later work by 
de Boor, Schoenberg and others), which are polynomial splines of minimal support, 
may prove to be useful in the above respects. 
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